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Abbreviations used

ICS: Inhaled corticosteroid

OTU: Operational taxonomic unit

PERMANOVA: Permutational multiple ANOVA

qPCR: Quantitative PCR

SIMPER: Similarity of percentages
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Background: Asthma pathophysiology and treatment
responsiveness are predicted by inflammatory phenotype.
However, the relationship between airway microbiology and
asthma phenotype is poorly understood.
Objective: We aimed to characterize the airway microbiota in
patients with symptomatic stable asthma and relate composition
to airway inflammatory phenotype and other phenotypic
characteristics.
Methods: Themicrobial composition of induced sputum specimens
collected fromadult patients screened for amulticenter randomized
controlled trialwasdeterminedbyusing16SrRNAgene sequencing.
Inflammatory phenotypes were defined by sputum neutrophil and
eosinophil cell proportions.Microbiotawere definedbyusinga- and
b-diversity measures, and interphenotype differences were
identified by using similarity of percentages, network analysis, and
taxon fold change. Phenotypic predictors of airway microbiology
were identified by using multivariate linear regression.
Results: Microbiota composition was determined in 167
participants and classified as eosinophilic (n 5 84), neutrophilic
(n 5 14), paucigranulocytic (n 5 60), or mixed neutrophilic-
eosinophilic (n 5 9) asthma phenotypes. Airway microbiology
was significantly less diverse (P 5 .022) and more dissimilar
(P 5 .005) in neutrophilic compared with eosinophilic
participants. Sputum neutrophil proportions, but not eosinophil
proportions, correlated significantly with these diversity
measures (a-diversity: Spearman r 5 20.374, P < .001;
b-diversity: r 5 0.238, P 5 .002). Interphenotype differences
were characterized by a greater frequency of pathogenic taxa at
high relative abundance and reduced Streptococcus, Gemella,
and Porphyromonas taxa relative abundance in patients with
neutrophilic asthma. Multivariate regression confirmed that
sputum neutrophil proportion was the strongest predictor of
microbiota composition.
Conclusions: Neutrophilic asthma is associated with airway
microbiology that is significantly different from that seen inpatients
with other inflammatory phenotypes, particularly eosinophilic
asthma. Differences in microbiota composition might influence the
response to antimicrobial and steroid therapies and the risk of lung
infection. (J Allergy Clin Immunol 2018;141:94-103.)

Key words: Asthma, microbiome, neutrophil, eosinophil

Evidence-based patient stratification is required to address the
heterogeneity of asthma severity and treatment responsiveness.
Asthma phenotype based on characteristics of airway inflamma-
tion are increasingly recognized as an important prognostic
indicator.1 In addition to an allergen-induced, TH2 lymphocyte,
IL-5–mediated, eosinophilic inflammatory response, asthma can
also occur in the absence of eosinophilic inflammation (termed
noneosinophilic asthma).2,3 Indeed, based on relative numbers
of sputum eosinophils and neutrophils, 4 inflammatory subtypes
have been described: eosinophilic asthma, neutrophilic asthma,
mixed granulocytic asthma, and paucigranulocytic asthma.2

Unlike the relatively well-defined mechanisms that result in
eosinophilic airway inflammation, those leading to noneosino-
philic asthma, particularly neutrophilic asthma, remain relatively
poorly understood.4 Furthermore, although noneosinophilic phe-
notypes occur across the spectrumof asthma severity,1,2,5 they typi-
cally respond poorly to corticosteroids.2,5 Inflammatory
phenotypes have also been shown to differ with respect to airway
microbiology. Compared with other patients with asthma, those
with neutrophilic asthma are more likely to have a potentially path-
ogenic organism identified by means of either culture-based6 or
culture-independent5 approaches and have reduced airway bacte-
rial diversity.7 Given that airwaymicrobiota composition is associ-
atedwith the degree of airway hyperresponsiveness among patients
with suboptimally controlled asthma,8 interphenotype differences
in airway microbiology are likely to be clinically important.

The relationships between asthma inflammatory phenotypes
and airway microbiology are likely to be complex and bidirec-
tional. Asthma phenotypes represent immunologic and physico-
chemical differences within the lower airways that are likely to be
reflected through their selective effect on microbial growth and
airway clearance in divergent lower airway microbiota.9 Where
these differences involve the increased abundance of particular
respiratory pathogens or a depletion of commensal populations,
they could contribute substantially to the course of airway disease
or risk of adverse treatment events, such as corticosteroid-
associated pneumonia.10 On the other hand, the characteristics
of airway microbiology, even in the absence of frank infection,
could influence the asthma inflammatory phenotype. Defining
the relationships between inflammatory phenotype and lower
airway microbiota would inform our understanding of asthma
pathophysiology and could help identify prognostic markers.

Several previous studies have reported differences in airway
microbiology in patients with eosinophilic and noneosinophilic
asthma and the existence of significant relationships between this
microbiota composition and clinical asthma measures.5,11-14

However, although providing important insight, these studies
have involved relatively small and heterogeneous patient cohorts.
Our study, based on participants enrolled in the Asthma andMac-
rolides: the Azithromycin Efficacy and Safety Study
(ACTRN12609000197235), was more than 3 times the size of
any study performed previously and focused on a well-defined
population of patients with severe but stable asthma, the majority
of whom were treated with inhaled corticosteroids (ICSs).

Through application of a systematic approach to microbiota
characterization, we aimed to assess whether asthma inflamma-
tory phenotypes were associated with substantially different
lower airway bacteriology (herein referred to as microbiology),
to identify bacterial taxa that discriminate among inflammatory
phenotypes, and to determine the contribution of patient and
clinical characteristics to variation in the composition of the
bacterial component of the microbiome.
METHODS

Study population
For full methodology, see the Methods section in this article’s Online Repos-

itory at www.jacionline.org. Analysis was performed on samples collected as

part of the baseline screening population from the clinical Azithromycin Effi-

cacy and Safety Study (ACTRN12609000197235). Participants were recruited

http://www.jacionline.org
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from 8 centers across Australia (detailed in the Methods section in this article’s

Online Repository). Predefined inflammatory phenotype categories based on

sputum cell counts relative to patient agewere assigned, as published previously

and detailed in the Methods section in this article’s Online Repository.3,15

Briefly, the neutrophilic phenotype was defined as 61% or greater neutrophils

(neutrophil percentage cutoff dependent on age), the eosinophilic phenotype

as 3% or greater eosinophils, the paucigranulocytic phenotype as 61% or less

neutrophils and 3% or less eosinophils, and the mixed granulocytic phenotype

as 61% or greater neutrophils and 3% or greater eosinophils.
DNA extraction, 16S rRNA gene amplicon

sequencing, and gene copy numbers
DNA extraction was performed on 100-mL sputum aliquots by using a

combined physical, enzymatic, and heat-based cell lysis, followed by phenol

chloroform extraction and DNA recovery with EZ-10 Spin columns (Bio Basic,

Ontario,Canada). TheV1-3hypervariable regionof thebacterial 16S rRNAgene

was amplified from sputum DNA by using the modified primers 27F and 519R.

Amplicons were cleaned, indexed, and sequenced according to the Illumina

MiSeq 16S Metagenomic Sequencing Library Preparation Protocol

(Illumina, San Diego, Calif). 16S rRNA sequence data were processed, as

previously described.16 Spurious operational taxonomic units (OTUs) were

removed systematically by using previous reports of common laboratory

sequencing contaminants.17 Bacterial burden was quantified with quantitative

PCR (qPCR) for the 16S rRNA gene.18 Detailed extraction, sequencing, and

qPCR protocols are described in the Methods section in this article’s Online

Repository.
Diversity measurements and statistical analyses
Five a-diversity (within-sample variance) indices were used to test a

variety of parameters of within-patient taxon distribution: Faith’s

phylogenetic diversity (in which a higher value indicates a more

phylogenetically diverse sample), Simpson’s and Pielou’s evenness indices

(in which a higher value indicates a more equitable distribution of taxa

abundance), taxa richness (the total number of taxa detected), and

Shannon-Weiner diversity (a measure incorporating both the number and

equitability of detected taxa). b-Diversity (intersample variance)

was determined by using 2 approaches: weighted UniFrac

similarity (which accounts for phylogenetic distance) and square

root–transformed Bray-Curtis similarity (based on the relative abundance of

taxa alone). Both a- and b-diversity measures were calculated with either

QIIME (version 1.8.0) or PRIMER (version 6; PRIMER-E, Plymouth, United

Kingdom) software.

Continuous data were tested for nonnormality, including skewness and

kurtosis, by using the D’Agostino-Pearson omnibus test. Kruskal-Wallis

1-way ANOVAwith the Dunn post hoc test was used for multiple comparisons

of nonnormally distributed data, the Mann-Whitney U test was used for

pairwise comparisons, the x2 test was used for categorical data, and the

Spearman test was used for correlations (GraphPad Prism, version 7.01;

GraphPad Software, La Jolla, Calif).

Multivariate linear regression was performed with Faith’s phylogenetic

diversity and UniFrac distance from centroid as 2 dependent variables

reflecting aspects of diversity (SPSS software, version 23.0; IBM, Armonk,

NY). Covariates were selected a priori and included in the model based on a

significant correlation with either dependent variable. CIs were obtained by

means of bootstrapping, resampling 1000 times. Covariates were tested for

collinearity by using variance inflation factors.

Taxon dispersion
Variation in microbiota composition between groups was assessed by using

similarity of percentages (SIMPER) analysis in PRIMER and SparCC, from

which correlations (r >_ 0.25 or r <_20.25) and P values (P <_ .01) were visual-

ized by means of network analysis with Cytoscape (version 3.4.0). Pathogen

overgrowth adjustment is described in theMethods section in this article’s On-

line Repository.
RESULTS

Clinical characteristics
Induced sputum samples were obtained from 187 participants.

Of these, 13 were excluded because of poor sample quality. Of the
174 that underwent 16S rRNA gene amplicon sequencing, a
further 7 were excluded because of an insufficient sequence read
depth (see Table E1 in this article’s Online Repository at www.
jacionline.org). The remaining 167 subjects were classified as
one of 4 inflammatory phenotypes based on previously described
sputum inflammatory cell count percentages: neutrophilic
(n 5 14), eosinophilic (n 5 84), paucigranulocytic (n 5 60), or
mixed granulocytic (n 5 9).3,15 There was no significant differ-
ence in age, sex distribution, atopy, smoking history, ICS dose,
Global Initiative for Asthma treatment step, or mean Asthma
Control Questionnaire 6 score between these phenotypic groups,
as assessed by using multiple comparison tests (Table I). Howev-
er, there were significant differences in lung function, as assessed
by both FEV1 percent predicted (P5 .035) and FEV1/forced vital
capacity percentage (P 5 .013).

After quality filtering and chimera removal, 16S rRNA gene
amplicon sequencing resulted in a median read depth of 12,792
(quartile 1 and quartile 3, 8,060 and 16,595). Sequence data were
subsampled to a uniform depth of 1,732 reads based on rarefaction
curve asymptotes and Good’s coverage values. No significant
differences in total bacterial burden were found between inflam-
matory phenotypes (P5 .51, Kruskal-Wallis test; see Fig E1 in this
article’s Online Repository at www.jacionline.org).
a-Diversity
Participants with neutrophilic asthma had significantly lower

Faith’s phylogenetic scores (P 5 .022) than participants with
eosinophilic asthma, which resembled those of patients with pau-
cigranulocytic asthma (Fig 1, A). Faith’s phylogenetic diversity
significantly correlated with the sputum neutrophil percentage
(r520.374, P < .0001; Fig 1, B) but not with the sputum eosin-
ophil percentage (r5 0.146, P5 .060; Fig 1, C). Analysis with a
range of alternative a-diversity indices (taxa richness, Shannon-
Wiener index, Simpson index, and Pielou evenness; see Figs E2
and E3 in this article’s Online Repository at www.jacionline.
org) resulted in consistent findings in relation to phenotype,
sputum neutrophil percentage, and sputum eosinophil percentage.
Together, these results demonstrate a significant relationship be-
tween airway microbiota composition and sputum neutrophilia
but not sputum eosinophilia.
b-Diversity
Principal coordinate analysis of weighted UniFrac similarity

distance showed that neutrophilic samples were distinguished
from other phenotypes along the first and second principal
coordinates, whereas the other phenotypes broadly clustered
together (Fig 2, A). Consistent with these observations, a permu-
tational multiple ANOVA (PERMANOVA) test showed that
phenotype grouping contributed significantly to differences inmi-
crobial composition of the samples (P 5 .0004, pseudo-
F 5 3.997; see Table E2 in this article’s Online Repository at
www.jacionline.org). Pairwise PERMANOVA comparing the
phenotype groups indicated that variance was attributed to the
neutrophilic versus eosinophilic (P 5 .0001, T 5 3.30) and
neutrophilic versus paucigranulocytic (P 5 .0015, T 5 2.52)

http://www.jacionline.org
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TABLE I. Clinical and inflammatory cell parameters of participants

Neutrophilic Eosinophilic Paucigranulocytic Mixed granulocytic P value

No. 14 84 60 9

Age (y), mean (SD) 59.8 (13.9) 57.2 (15.2) 55.8 (13.8) 56.8 (17.8) .817

Male sex, no. (%) 9 (64.3) 30 (35.7) 23 (38.3) 6 (66.7) .084

Atopic, no. (%) 11 (78.6) 62 (76.5), n 5 81 52 (86.7) 6 (66.7) .305

Previous smoker, no. (%) 6 (42.9) 32 (38.1) 17 (28.3) 4 (44.4) .491

Smoking pack years, median

(Q1, Q3)

22.0 (18.6, 27.5) 5.3 (1.2, 15.9) 5.0 (1.3, 30.0) 4.4 (0.9, 63.6) .379

Duration of asthma (y), median

(Q1, Q3)

33.8 (3.5, 48.3) 36.3 (19.7, 49.2) 33.7 (14.2, 54.4) 53.6 (32.6, 60.4) .205

FEV1 (% predicted), mean (SD) 70.3 (18.2) 70.0 (17.9) 78.7 (19.2)* 68.4 (17.3) .035

FVC (% predicted), mean (SD) 81.4 (11.6) 83.6 (16.4) 85.1 (15.0) 82.9 (11.7) .854

FEV1/FVC (%), mean (SD) 65.8 (14.5) 64.9 (12.2) 71.3 (12.2)* 63.9 (12.7) .013

ACQ6 score, mean (SD) 2.1 (1.2) 1.9 (0.9) 1.6 (0.8) 1.5 (0.6) .210

GINA treatment step .058

1 1 (7.1) 2 (2.5) 0 (0) 0 (0)

2 0 (0) 0 (0) 0 (0) 0 (0)

3 0 (0) 10 (12.4) 12 (20.3) 2 (22.2)

4 11 (78.6) 67 (82.7) 47 (80.0) 7 (77.8)

5 2 (14.3) 2 (2.5) 0 (0) 0 (0)

ICS dose (mg), median (Q1, Q3) 2000 (1280, 2000), n 5 13 1000 (800, 2000), n 5 82 1000 (800, 2000), n 5 59 1600 (1000, 2000) .254

Total cell count (3 106/mL

[Q1, Q3])

9.8 (7.6, 12.7)*� 3.6 (1.9, 7.6) 3.74 (2.0, 7.6) 8.64 (5.22, 11.34) <.001

Viability (%) 89.2 (73.5, 93.0)*� 69.8 (52.2, 80.7) 68.9 (55.7, 79.5) 90.0 (84.4, 93.7)*� <.001

Neutrophils (%) 75.0 (68.80, 84.00)*� 27.13 (14.38, 41.00) 34.13 (12.63, 49.25) 77.00 (71.25, 77.50)*� <.001

Eosinophils (%) 0.63 (0.50, 1.00)* 6.88 (3.63, 18.13) 0.25 (0.00, 1.00)* 6.75 (3.25, 12.25)�� <.001

Macrophages (%) 20.75 (14.50, 30.25)*� 52.75 (38.25, 71.00) 53.34 (43.50, 75.63) 16.00 (15.50, 20.25)*� <.001

Lymphocytes (%) 0.63 (0.25, 1.00) 1.13 (0.25, 2.25) 0.88 (0.25, 2.63) 0.25 (0.00, 0.38)*� .018

Columnar epithelial cells (%) 0.25 (0.00, 1.25)*� 2.17 (0.75, 6.00) 4.13 (1.21, 8.50) 0.50 (0.25, 1.50)� <.001

Squamous cells (%) 1.11 (0.50, 3.85)*� 5.99 (2.32, 16.23) 6.18 (2.92, 11.31) 3.38 (0.25, 8.05) .002

P values in the last column describe variance across 4 phenotypes.

ACQ6, Asthma Control Questionnaire 6; FVC, forced vital capacity; GINA, Global Initiative for Asthma; Q1, Q3, quartile 1, quartile 3.

*P < .05 versus eosinophilic asthma.

�P < .05 versus paucigranulocytic asthma.

�P < .05 versus neutrophilic asthma.
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groups (see Table E3 in this article’s Online Repository at www.
jacionline.org).

Assessment of microbiota dispersion based on distance from
centroid was consistent with PERMANOVA analysis, with the
samples from neutrophilic phenotype participants having signif-
icantly higher distances from the centroid than samples from
eosinophilic and paucigranulocytic participants (Fig 2, B). In
keeping with a-diversity analyses, variance in distance from
centroid was associated with sputum neutrophil percentage rather
than sputum eosinophil percentage (see Fig E4 in this article’s
Online Repository at www.jacionline.org). b-Diversity analyses
using a second distance measure, Bray-Curtis similarity, pro-
duced consistent findings (see Fig E5 in this article’s Online Re-
pository at www.jacionline.org).
Taxon distribution and network analysis
SIMPER analysis was used to rank taxa according to their

contribution to intergroup variance in microbiota composition.
Thirteen taxa were identified, which cumulatively accounted
for approximately 50% of total variance between neutrophilic
and eosinophilic samples (see Table E4 in this article’s Online
Repository at www.jacionline.org). Hierarchical cluster anal-
ysis based on relative taxon abundance revealed that Moraxella
and Haemophilus clustered separately from the other 11 taxa
(Fig 3). In the patients with neutrophilic asthma, Moraxella
and Haemophilus taxa exceeded 40% relative abundance in 6
(42.9%) of 14 samples compared with only 1 (1.19%) of 84
patients with eosinophilic asthma, 7 (11.7%) of 60 patients
with paucigranulocytic asthma, and 1 (11.1%) of 9 patients
with a mixed phenotype (x2 5 25.5, P < .0001; Fig 3). Rela-
tionships between bacterial taxon relative abundance were
further visualized by using network analysis (Fig 4 and see
Fig E6 in this article’s Online Repository at www.jacionline.
org), revealing a bacterial community of taxa with positively
correlated abundances in almost all cases. Most of these taxa
were more prevalent in eosinophilic samples than in neutro-
philic samples. Haemophilus taxon, which had a mean abun-
dance that was higher in neutrophilic samples, was the single
exception, negatively correlating with other members of the
sputum bacterial community.

Of the 13 discriminant taxa identified by SIMPER, Strepto-
coccus II (see the Methods section in this article’s Online Repos-
itory at www.jacionline.org for classification), Gemella, Rothia,
and Porphyromonas taxa were significantly less abundant in
neutrophilic than in eosinophilic and paucigranulocytic pheno-
types (Fig 5, A). Sputum neutrophil percentage positively corre-
lated with the relative abundance of Moraxella taxon and
negatively correlated with the relative abundance of Strepto-
coccus I, Gemella, and Porphyromonas taxa (Fig 5, B). In
contrast, Haemophilus taxon negatively correlated with eosino-
phil percentage, and Streptococcus I, Neisseria, and Gemella

http://www.jacionline.org
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FIG 1. Faith’s phylogenetic diversity is significantly associated with sputum neutrophilia but not

eosinophilia. A, Patients grouped by asthma phenotype. B, Neutrophil percentage. The dotted line at

61% neutrophils indicates the phenotype cutoff point. C, Eosinophil percentage. The dotted line at 3% eo-

sinophils indicates the phenotype cutoff point. Colors represent the asthma phenotype: blue is greater than

61% neutrophils, green is greater than 3% eosinophils, yellow is less than 61% neutrophils and less than 3%

eosinophils (paucigranulocytic), and purple is both greater than 61% neutrophils and greater than 3% eosin-

ophils (mixed). Statistical significance was assessed by using the Kruskal-Wallis 1-way ANOVA with the

Dunn post hoc test (Fig 1, A) or Spearman rank correlation (Fig 1, B and C).
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taxa positively correlated with eosinophil percentage (see Fig E7
in this article’s Online Repository at www.jacionline.org). Prevo-
tella, Actinomyces, Leptotrichia, and Veillonella taxa, although
identified by using SIMPER and represented by highly connected
nodes in the network analysis, neither differed between airway in-
flammatory phenotypes nor correlated with sputum cell counts.
Nondominant microbiome
We sought to establish whether differences in microbiota

composition between inflammatory phenotypes were explained
solely by overgrowth of opportunistic taxa (eg, Haemophilus and
Moraxella taxa) or whether differences existed even in the
absence of pathogen predominance. Two separate approaches
were used to investigate this: rescaling of relative abundance
data after exclusion of pathogen predominance and assessment
of ranked taxon fold change between neutrophilic and eosino-
philic groups based on nonsubsampled taxa counts. Rescaled rela-
tive abundance data remained significantly different between
inflammatory phenotypes (P 5 .0004, pseudo-F 5 2.38;
see Table E5 in this article’s Online Repository at www.
jacionline.org). Pairwise tests revealed significant differences be-
tween participants with neutrophilic and eosinophilic phenotypes
(P5 .0001, T5 2.31) and between participants with neutrophilic
and paucigranulocytic phenotypes (P 5 .0002, T 5 2.26; see
Table E5). Assessment of taxa count2ranked fold change sup-
ported these findings, with significant taxa count differences be-
tween participants with neutrophilic and eosinophilic
phenotypes (see Fig E8 in this article’s Online Repository at
www.jacionline.org).
FIG 2. Microbiota dispersion grouped by asthma phenotype. A, Principal

coordinate analysis. The first 2 principal coordinates are plotted on the x-

and y-axes, respectively (representing 59.9% of the total variation). B, Dis-

tance from centroid. Statistical significance was assessed by using

Kruskal-Wallis 1-way ANOVA with the Dunn post hoc test.
Clinical and inflammatory associations with

microbiota composition
In univariate analysis Faith’s phylogenetic diversity signifi-

cantly inversely correlated with sputum neutrophil percentage,
age, and ICS dose and significantly positively correlated with
FEV1 percentage (Table II). Conversely, weighted UniFrac dis-
tance from centroid significantly positively correlated with
sputum neutrophil percentage and was significantly different

http://www.jacionline.org
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FIG 3. Relative abundance of discriminant taxa among asthma phenotypes. The 13 taxa that collectively

contribute to approximately 50% of variance among phenotypes, as determined by using SIMPER analysis.

Clustering shows the similarity relationship of genera based on Bray-Curtis similarity distance and the

single linkage hierarchical clustering method. *Taxa assigned Actinomyces species uncultured bacteria.

#Taxa assigned Actinomyces species oral clone DR002.

FIG 4. Bacterial network analysis of the asthma cohort. Each edge represents a significant correlation

colored to indicate either positivity (blue) or negativity (red). Edge width and transparency are proportional

to the absolute value of the correlation coefficient. Node size is proportional to mean relative abundance.

Node hue is proportional to the difference in taxon relative abundance between the neutrophilic phenotype

group and the eosinophilic phenotype group. Correlations were performed with SparCC with a correlation

cutoff R value of greater than 0.25 or less than 20.25. *Actinomyces species uncultured bacteria. #Actino-
myces species oral clone DR002.
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based on sex and atopy but not with age, ICS dose, FEV1 percent-
age, or previous smoking status (Table II). In multivariate anal-
ysis, sputum neutrophil percentage was the only variable that
independently predicted both Faith’s phylogenetic diversity and
weighted UniFrac distance from centroid (P 5 .002 [95% CI,
20.07 to 20.02] and P < .001 [95% CI, 0.07 to 0.22], respec-
tively; Table III). Age and ICS dose both independently predicted
Faith’s diversity (P 5 .030 [95% CI 5 20.07 to 20.004] and
P 5 .042 [95% CI 5 20.001 to 20.001], respectively), whereas
atopy and sex independently predicted distance from centroid
(P 5 .018 [95% CI 5 1.3 to 8.4] and P 5 .039 [95%
CI 5 27.5 to 20.30], respectively).
DISCUSSION
To our knowledge, this is the largest study to date to assess

predictors of the airway microbiota composition in asthmatic
patients. Our primary comparisons were between asthma



FIG 5. Taxa distribution differs by sputum neutrophilia.A, Taxa that significantly differ by patient inflamma-

tory phenotype. B, Significant correlations between taxa and neutrophil percentages. Colors represent

asthma phenotype based on neutrophilia or eosinophilia: blue is greater than 61% neutrophils, green is

greater than 3% eosinophils, yellow is less than 61% neutrophils and less than 3% eosinophils (paucigranu-

locytic), and purple is both greater than 61% neutrophils and greater than 3% eosinophils (mixed). The

dotted line at 61% neutrophils indicates the phenotype cutoff point. Statistical significance was assessed

by using Kruskal-Wallis 1-way ANOVA with the Dunn post hoc test (Fig 5, A) and Spearman rank correlation

(Fig 5, B).
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TABLE III. Multivariate linear regression on a-diversity (Faith’s

phylogenetic diversity) and b-diversity (weighted UniFrac

distance from centroid) performed on 160 participants

B 95% CI P value

Faith’s phylogenetic diversity

Neutrophil percentage 20.046 20.07 to 20.02 .002

Age 20.036 20.07 to 20.004 .030

Sex 0.35 20.59 to 1.4 .49

Atopy 20.77 21.7 to 0.12 .10

FEV1 (% predicted) 0.016 20.01 to 0.04 .23

ICS dose 20.001 20.001 to 20.001 .042

UniFrac distance from centroid

Neutrophil percentage 0.14 0.07 to 0.22 <.001

Age 0.056 20.05 to 0.16 .30

Sex 23.9 27.5 to 20.30 .039

Atopy 4.8 1.3 to 8.4 .018

FEV1 (% predicted) 0.049 20.04 to 0.14 .27

ICS dose <0.001 20.001 to 0.001 .56

TABLE II. Comparison of patients’ characteristics with a-diversity (Faith’s phylogenetic diversity) and b-diversity (weighted

UniFrac distance from centroid) assessed by using the Spearman or Mann-Whitney test

Neutrophil percentage Age ICS dose* FEV1 (% predicted) Atopyyz Sexy Ever smokedy
Faith’s diversity r 20.374 20.309 20.242 0.193

P value <0.001 <0.001 0.002 0.013 0.32 0.97 0.53

UniFrac distance r 0.24 0.015 0.096 0.034

P value 0.002 0.84 0.22 0.66 0.019 0.003 0.70

Spearman correlation coefficient (r) and probability values are as indicated.

*n 5 163.

�Assessed by using the Mann-Whitney test.

�n 5 164.
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inflammatory phenotypes, where we observed significant differ-
ences in the composition of airway microbiota. These differences
were largely between neutrophilic and eosinophilic phenotypes
and reflected a reduced diversity and evenness of detectable
bacterial taxa in the neutrophilic participants. Reduced micro-
biota diversity has been reported after acute and chronic airway
infections in asthmatic patients5,7 and in those with other respira-
tory disorders,19-21 as well as with the effects of exposure to anti-
biotics.22,23 Importantly, none of the study participants reported
clinical features of respiratory tract infection or had antibiotic
therapy during the preceding month.

We further assessed a-diversity metrics relative to continuous
neutrophil and eosinophil count data as an alternative to categor-
ical inflammatory phenotypes. Significant correlations were
observed between sputum neutrophil percentages and each
assessed a-diversity metric, with no significant interactions
between any diversity metric and sputum eosinophil percentages,
strongly suggesting that decreased microbiota richness, evenness,
and diversity are associated with airway neutrophilia. Analysis of
sputum microbiota b-diversity (intersample similarity) also
demonstrated substantial differences between patients with
neutrophilic airway inflammation and those with other inflam-
matory phenotypes, which is consistent with the stochastic
overgrowth of complex commensal communities by individual
opportunistic pathogens.24

We identified bacterial taxa that contributed to observed
differences in microbiota composition between inflammatory
phenotypes, namely high abundance of Haemophilus and
Moraxella taxa in neutrophilic participants, supporting previous
findings.5 This could be interpreted as simply an increased rela-
tive abundance of airway pathogens in neutrophilic patients, re-
flecting neutrophilic influx into the airways during subclinical
lower airway infection, with a reciprocal decrease in the relative
abundance of commensal taxa. However, a group of common
airway taxa correlated negatively with sputum neutrophil per-
centages (Gemella, Porphyromonas, and Streptococcus taxa)
and, importantly, even after controlling for overgrowth effects
ofHaemophilus andMoraxella taxa, significant differences inmi-
crobiota composition between neutrophilic and eosinophilic par-
ticipants were still observed. This finding suggests that 2 separate
phenomena contribute to microbial differences between inflam-
matory phenotypes: the effect of pathogen overgrowth and the se-
lective pressure of airway inflammatory characteristics in the
absence of infection. The latter could result in more broad-scale
divergence in composition between the neutrophilic and eosino-
philic subgroups, in turn contributing to an increased risk of lower
airway infection in neutrophilic patients through an increased
presence of opportunistic pathogens.

This finding has clear implications for the clinical management
of asthma, in which low-dose macrolide and ICS therapies have
been shown to influence overgrowth by opportunistic respiratory
pathogens and innate immune function, respectively.6,14,25

Furthermore, the relative lack of efficacy of ICSs in patients
with noneosinophilic asthma2 might lead to use of higher doses
compared with those used by eosinophilic patients. The combina-
tion of underlying differences in airway microbiota (associated
with differences in inflammatory phenotype) and inefficacious
therapies being used at higher doses might contribute to reduced
bacterial diversity,14 the high concentrations of Proteobacteria
seen in the airways of neutrophilic patients,7 a greater propensity
for lung infection, and a further enhancement of the neutrophilic
phenotype.6

Although strong associations between the neutrophilic
phenotype and sputum microbiota composition were found,
associations between eosinophil counts and microbiota compo-
sition were minimal. This contrasts with previous studies
reporting increased Tropheryma taxon associated with eosino-
philia7 and associations between bronchial biopsy eosinophil
count and bacterial composition11 and reduced bacterial burden
associated with type 2–high airway inflammation.26

An important strength of our study was its involvement of a
large group of well-defined participants with poorly controlled
asthma who were taking regular inhaled therapy. The application
of detailed induced sputum microbiota characterization
from these participants then allowed us to assess the extent to
which clinical and inflammatory characteristics independently
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associated with variations in airway microbiology by using
multivariate linear regression analysis. Multivariate regression
identified the sputum neutrophil percentage as the strongest
predictor of microbiota variance. However, age, ICS dose, sex,
and atopy were also significant independent predictors;
conversely, lung function (as measured by FEV1 percentage)
and smoking status were not.

Of particular interest was the finding that increasing age
predicted reduced microbiota a-diversity because age has
been previously associated with microbiome composition in
patients with other chronic respiratory diseases. The airway
microbiome of patients with cystic fibrosis is strongly
affected by age,27 which is presumed to relate to the selective
effects of increased antibiotic exposure over time and the
changing characteristics of the airway environment.9 It is
interesting to speculate that the relationship between neutro-
philia and microbiota composition might reflect the effect
of age on neutrophilia,15 suggesting that a tendency toward
a neutrophilic phenotype and/or a susceptibility to opportu-
nistic airway infections increases with age in patients with
severe asthma.

It is important to recognize a number of limitations of our
study. Airway microbiology was assessed based on induced
sputum, which, although shown to provide reproducible
inflammatory cell levels in patients with moderate-to-severe
asthma,28,29 only provides an approximation of lower airway
microbiology (in common with other lower airway sampling
strategies).30 It is also important to note that induced sputum
levels of neutrophils and eosinophils can change
frequently31,32 and that the relationships between airway
microbiology and inflammatory phenotype reported are
cross-sectional. Detailed longitudinal analysis is now required
to determine how these relationships change with time. 16S
rRNA gene amplicon sequence data were subsampled to a
level that allowed inclusion of the greatest number of subjects
while maintaining sufficient read depth to accurately describe
microbiota composition. However, additional analysis with a
greater read depth might identify rare taxa that contribute to
disease characteristics. Although multivariate regression iden-
tified sputum neutrophilia as an independent predictor of mi-
crobiota composition, the effects of variation in ICS dose
between phenotypes (although nonsignificant) should be
noted. Finally, although none of the study participants
received antibiotics in the month before recruitment, data on
less recent exposure were not available and could have a last-
ing effect on the lower airway microbiome composition.22

The clear relationship between airway inflammatory pheno-
type and the microbiota highlight the need for studies examining
whether asthma treatments should be individualized based on
both inflammatory phenotype stratification and lower airway
microbiology. There is now a clear need to investigate the extent
to which variations in the airway microbiota predict the risk of
future asthma exacerbations and to determine whether airway
microbiota characterization could be used as a basis for asthma
treatment selection.
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Key messages

d Lower airway microbiology differs significantly between
patients with neutrophilic and eosinophilic asthma char-
acterized based on both increased frequency of patho-
genic taxa and divergence in the wider airway microbiota.

d Sputum neutrophilia is the strongest predictor of airway
microbiota composition, with age, ICS dose, sex, and
atopy also being independent predictors.

d The clear relationships between airway microbiota
composition, inflammatory phenotype, and clinical mea-
sures suggest microbiota characterization could be a use-
ful contributor to the individualization of asthma
treatments.
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Exclusion criteria
Asthma diagnosis was established by using American Thoracic Society

guidelines based on current episodic respiratory symptoms, clinical diagnosis,

and evidence of variable airflow obstruction.E1 Participants with asthma were

included if stable but symptomatic, despite being prescribed maintenance ICS

and long-acting bronchodilator treatment with an Asthma Control Question-

naire 6 score of greater than 0.75.E2

Participants with an FEV1 of less than 40% of predicted value, current

smokers, ex-smokers who had ceased smoking in the previous year, and those

with a recent (past 4 weeks) exacerbation or respiratory tract infection were

excluded. Those with significant smoking-related air-space disease (ex-

smokers with a >10 pack year history and a diffusing capacity/alveolar volume

of less than 70% of predicted value or those with a smoking history of greater

than 10 pack years and exhaled carbon monoxide >10 ppm) were also

excluded. This study was conducted in accordance with the amended Decla-

ration of Helsinki. Local institutional review boards approved the protocol,

and written informed consent was obtained from all participants.

Institutional centers
Sputum samples were collected from 8 Australian centers: Hunter Medical

Research Institute, Newcastle, Australia; the Prince Charles Hospital, Cherm-

side, Australia; Princess Alexandra Hospital, Woolloongabba, Australia;

Royal Adelaide Hospital, Adelaide, Australia; Sir Charles Gairdner Hospital,

Nedlands, Australia; the Woolcock Institute of Medical Research, Glebe,

Australia; Concord Repatriation General Hospital, Concord, Australia; and

Liverpool Hospital, Liverpool, Australia.

Sample collection
All study participants attended a single visit that included assessment of

lung function, asthma symptoms, asthma-specific quality of life,E3 medication

use, and smoking status. Sputum induction with hypertonic saline (4.5%) was

performed, as described previously.E4 Sputum aliquots were stored at2808C
for DNA extraction or dispersed by using dithiothreitol for sputum cell count

assessment and inflammatory subtype determination.E5

Patient inflammatory phenotyping
Patients’ sputum was dispersed by using dithiothreitol, and inflammatory

cells were counted as a percentage of total sputum cells. Inflammatory subtype

was determined, as described below. Neutrophilic cutoff values were age

dependent, as described previously.E6,E7

Neutrophilic phenotype. Values for the neutrophilic phenotype
were as follows: neutrophil percentage (<20 years old), 75.57% or greater;

neutrophil percentage (20-40 years old), 61.61% or greater; neutrophil

percentage (40-60 years old), 63.25% or greater; and neutrophil percentage

(>60 years old), 67.25% or greater.

Eosinophilic phenotype. Values for the eosinophilic phenotype

were as follows: eosinophil percentage, 3% or greater.

Paucigranulocytic phenotype. Values for the paucigranulo-

cytic phenotypewere as follows: eosinophil percentage, 3% or less; neutrophil

percentage (<20 years old), 75.57%or less; neutrophil percentage (20-40 years

old), 61.61% or less; neutrophil percentage (40-60 years old), 63.25% or less;

and neutrophil percentage (>60 years old), 67.25% and less.

Mixed granulocytic phenotype. Values for the mixed granu-

locytic phenotype were as follows: eosinophil percentage, 3% or greater;

neutrophil percentage (<20 years old), 75.57% or greater; neutrophil percent-

age (20-40 years old), 61.61% or greater; neutrophil percentage (40-60 years

old), 63.25% or greater; and neutrophil percentage (>60 years old), 67.25% or

greater.

DNA extraction
DNA extraction was performed on sputum sample aliquots of approxi-

mately 100 mL. After the addition of 300 mL of PBS, samples were vortexed

for 10 seconds and placed on ice for 2 minutes. Bacterial cells were then
pelleted by means of centrifugation at 13,000g for 10 minutes. After removal

of supernatant, 300 mL of Tris-EDTA solution (10 mmol/L Tris-HCl and

1 mmol/L EDTA [pH 8.0]; Ambion, Thermo Fisher Scientific, Victoria,

Australia), 200 mg of silica/zirconium beads (1:1 of 0.1 mm and 1.0 mm; Bio-

Spec Products, Bartlesville, Okla), and a single chrome bead (3.2 mm; Bio-

Spec Products) were added to the tube containing the cell pellet. Samples

underwent bead beating at 6.5 m/s for 60 seconds in a FastPrep-24 Instrument

(MP Biomedicals, Burlingame, Calif). The homogenized sample was heated

to 908C for 5 minutes before being cooled on ice for 5 minutes. Lysozyme

(ROCHE, Thermo Fisher Scientific, Victoria, Australia) and lysostaphin

(Sigma-Aldrich, St Louis, Mo) were then added to a final concentration of 2

and 0.1 mg/mL, respectively, and samples were incubated at 378C for

1 hour. Proteinase K (Fermentas, Thermo Fisher Scientific, Victoria,

Australia) and sodium dodecyl sulfate (Sigma-Aldrich) were then added to

a final concentration of 1.2 mg/mL and 1.5% (wt/vol), respectively. After in-

cubation at 30 minutes at 568C, 40mL of 5 mol/L sodium chloride and 450mL

of phenol/chloroform/isoamyl alcohol (25:24:1; saline buffered at pH 8.0;

Sigma-Aldrich) were added, and samples were vortexed for 30 seconds. The

aqueous organic layers were separated by means of centrifugation at

13,000g for 10 minutes, and 400 mL of the aqueous layer was transferred to

a new microfuge tube. DNA was recovered by using an EZ-10 Spin column

in accordance with the manufacturer’s instructions (Bio Basic, Markham, On-

tario, Canada) after precipitation by addition of 10 mol/L ammonium acetate

and 99% ethanol (Sigma Aldrich) in a 1:10 and 1:1 ratio with sample volume,

respectively. DNA was eluted in 50 mL of UltraPure DNase/RNase-free

distilled water (Gibco, Thermo Fisher Scientific, Victoria, Australia) and

stored at 2808C before analysis.

16S rRNA gene amplicon sequencing
The V1-3 hypervariable region of the bacterial 16S rRNA gene was

amplified from sputum DNA by using modified primers 27F (59-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGRGTTTGATCMT

GGCTCAG-39) and 519R (59-GTCTCGTGGGCTCGGAGATGTGTATAA
GAGACAGGTNTTACNGCGGCKGCTG-39), with Illumina adapter over-

hang sequences as indicated by underlining. Amplicons were generated,

cleaned, indexed, and sequenced according to the Illumina MiSeq 16S Meta-

genomic Sequencing Library Preparation Protocol (http://support.illumina.

com/downloads/16s_metagenomic_sequencing_library_preparation.html)

with certain modifications. Briefly, an initial PCR reaction contained at least

12.5 ng of DNA, 5 mL of forward primer (1 mmol/L), 5 mL of reverse primer

(1 mmol/L), and 12.5 mL of 23 KAPA HiFi Hotstart ReadyMix (KAPA Bio-

systems,Wilmington,Mass) in a total volume of 25mL. The PCR reaction was

performed on a Veriti 96-well Thermal Cycler (Life Technologies, Grans Is-

land, NY) by using the following program: 95 8C for 3 minutes, followed by

25 cycles of 95 8C for 30 seconds, 55 8C for 30 seconds, and 72 8C for 30 sec-

onds and a final extension step at 72 8C for 5 minutes. Samples were multi-

plexed by using a dual-index approach with the Nextera XT Index kit

(Illumina), according to the manufacturer’s instructions. The final library

was paired-end sequenced at 2 3 300 bp by using a MiSeq Reagent Kit v3

on the Illumina MiSeq platform. Sequencing was performed at the David R

Gunn Genomics Facility, South Australian Health and Medical Research

Institute.

16S rRNA gene qPCR
The approximate 16S rRNA gene copy number was assessed by using

qPCR with the 16S rRNA universal primers B331F (59-TCCTACGGGAGG-
CAGCAGT-39) and B797R (59-GGACTACCAGGGTATCTAATCCTGTT-
39) and Platinum SYBR Green (Thermo Fisher Scientific), as previously

described.E8 Reactions were performed in duplicates, and averages were

taken. Sample total bacterial copy number was calculated per microliter of

DNA eluate against a standard curve of a known bacterial copy number.

Sequence data processing
The Quantitative Insights Into Microbial Ecology (version 1.8.0)E9

software was used to analyze the 16S rRNA sequence generated from

http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html
http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html
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paired-end amplicon sequencing by using a bioinformatics pipeline, as previ-

ously described.E10 Briefly, barcoded forward and reverse sequencing reads

were quality filtered and merged with Paired-End reAd mergeR (version

0.9.6).E11 Chimeras were detected and filtered from the paired-end reads by

usingUSEARCH (version 6.1)E12 against the 97% clustered representative se-

quences from the Greengenes database (versus 13.8).E13 OTUs were assigned

to the reads by using an open reference approach with the UCLUSTalgorithm

(version 1.2.22q) against the SILVA database (release 111, July 2012),E14

which was clustered at 97% identity. Spurious OTUs were then removed sys-

tematically by using previous reports of common laboratory sequencing con-

taminants.E15 A minimum subsampling depth of 1732 reads was then selected

for all samples.

Where taxa assignment did not classify to the family or genus level, OTU

reference sequences (accounting for >99% of OTU reads) were separately

aligned by using the SILVA Incremental Aligner (https://www.arb-silva.de/),

which uses SILVA, RDP, Greengenes, LTP, and EMBL sequence collections.

If the alignments identified taxa to the genus level and at greater than 99%

similarity, they replaced the previous taxon assignment. This occurred for

Streptococcus II, which was previously incorrectly assigned as Clostridiales;

Other;Other. Streptococcus I refers to the OTU cluster, which was assigned

as Streptococcus taxon during initial assignment.

Diversity measurements and statistical analyses
The Bray-Curtis matrix was calculated based on sample-normalized,

square root–transformed relative taxon abundance. Principal coordinate

analysis was used to visualize clustering of samples based on their similarity

matrices, with PCO1 and PCO2 coordinates and group centroids plotted by

using the ggplot2 package of R statistical software.E16 Distance from centroid

was calculated, as previously described, by using PRIMER.E17 PERMANO-

VAE18 on the b-diversity matrices was used to test the null hypothesis of no

difference among a priori–defined groups with the PERMANOVA1 add-on

package for PRIMER. The test was computed by using unrestricted permuta-

tion of raw data with 9999 random permutations at a significance level of .01.

Taxon dispersion
Variation in microbiota composition at the genus level was assessed by

using multiple approaches. First, taxa that contributed to the overall variation

between asthma phenotypes were identified by using SIMPER analysis in

PRIMER. Subsequently, the abundance of the 13 highest ranked taxa

(accounting for 50% of the dissimilarity between neutrophilic and eosino-

philic groups) were used to generate a heat map with the ggplot2 package of R

statistical software.E16 Hierarchical clustering of the taxa was performed on

Bray-Curtis dissimilarity and clustered by using the single linkage method.

Dominance of Haemophilus and Moraxella taxa was determined when the

relative abundance of each taxa exceeded 40%. This cutoff was selected based

to the distribution of the relative abundance, where a clear distinction between

samples with greater than 40% and less than 40% was evident, suggesting

overgrowth of these taxa.

Second, strong taxon-taxon correlations were identified by using

SparCC,E19 where absolute taxon abundances were bootstrapped 100 times

to generate correlation P values. Networks were then generated from selected

correlations (r >_ 0.25 or r <_20.25), and P values (P <_ .01) were generated by

using Cytoscape (version 3.4.0).

Two approaches were used to investigate the effect of pathogen overgrowth

on microbiota composition. First, in samples in which Haemophilus or Mor-

axella taxa were the dominant taxa and represented 40% or greater of total

reads, their relative abundance was adjusted to the mean value for the study

cohort, and the remaining relative abundance measures were rescaled, as
described previously.E20 PERMANOVA analyses were then performed on

the rescaled data.

Second, pairwise comparisons between neutrophilic and eosinophilic

samples were performed by using the phyloseq R packageE21 with the DE-

seq2E22 extension based on count data. P values were corrected by using the

Benjamini-Hochberg false discovery rate procedure, and a corrected a value

cutoff of less than 0.05 was used for inclusion.
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FIG E1. Bacterial burden, as assessed based on 16S rRNA gene copy

number. Bars show medians 6 95% CIs. Statistical significance was as-

sessed by using Kruskal-Wallis 1-way ANOVA with the Dunn post hoc

test. No significant difference between phenotypes was seen.
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FIG E2. a-Diversity measures among asthma phenotypes: A, taxa richness; B, Shannon-Wiener index; C,

Simpson evenness index; and D, Pielou evenness. Bars show medians 6 95% CIs. Statistical significance

was assessed by using Kruskal-Wallis 1-way ANOVA with the Dunn post hoc test.
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FIG E3. Correlations between sputum neutrophil/eosinophil counts (as a percentage of total cell count) and

a-diversity measures.A,Neutrophil percentage, The dotted line at 61% neutrophils indicates phenotype cut-

off point. B, Eosinophil percentage, The dotted line at 3% eosinophils indicates phenotype cutoff point.

Colors represent asthma phenotype based on neutrophilia or eosinophilia: blue is greater than 61% neutro-

phils, green is greater than 3% eosinophils, yellow is less than 61% neutrophils and less than 3% eosinophils

(paucigranulocytic), and purple is both greater than 61% neutrophils and greater than 3% eosinophils

(mixed). Statistical significance was assessed by using Spearman rank correlation.
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FIG E4. Correlations between sputum neutrophil/eosinophil counts (as a percentage of total cell count) and

weighted UniFrac distance from centroid. A, Neutrophil percentage. The dotted line at 61% neutrophils in-

dicates phenotype cutoff point. B, Eosinophil percentage. The dotted line at 3% eosinophils indicates

phenotype cutoff point. Colors represent asthma phenotype based on neutrophilia or eosinophilia: blue

is greater than 61% neutrophils, green is greater than 3% eosinophils, yellow is less than 61% neutrophils

and less than 3% eosinophils (paucigranulocytic), and purple is both greater than 61% neutrophils and

greater than 3% eosinophils (mixed). Statistical significance was assessed by using Spearman rank

correlation.
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FIG E5. A, Principal coordinate analysis of asthma phenotype groups based on Bray-Curtis similarity dis-

tances. The first 2 principal coordinates are plotted on the x- and y-axes, respectively (representing 36.5%

of total variation). B, Microbiota dispersion grouped by asthma phenotype. Distance from centroid was

calculated from the Bray-Curtis dissimilarity matrix. C and D, Correlations between sputum inflammatory

cell percentages and distance from centroid. Fig E5, C, Sputum neutrophil percentage versus Bray-Curtis

distance from centroid. Fig E5, D, Sputum eosinophil percentage vs Bray-Curtis distance from centroid.
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FIG E6. Bacterial network analysis, showing weight and color assigned to

edges and nodes.
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FIG E7. Taxa that significantly correlated with eosinophil percentages. Colors represent asthma phenotype

based on neutrophilia or eosinophilia: blue is greater than 61% neutrophils, green is greater than 3%

eosinophils, yellow is less than 61% neutrophils and less than 3% eosinophils (paucigranulocytic), and

purple is both greater than 61% neutrophils and greater than 3% eosinophils (mixed). The dotted line at 3%

eosinophils indicates phenotype cutoff points. Statistical significance was assessed by using Spearman

rank correlation.
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FIG E8. Normalized log2 fold changes of nonrarefied taxa read counts that

significantly (P < .05) differed between neutrophilic and eosinophilic pheno-

types. Positive fold change indicates taxa with significantly higher counts in

neutrophilic participants, and negative fold change indicates taxa with

significantly higher counts in eosinophilic participants. This shows that

when Haemophilus or Moraxella taxa dominance do not influence data

(because of nonrarefied count data as opposed to relative abundance), mul-

tiple taxa remain significantly different between neutrophilic and eosino-

philic participants.
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TABLE E1. 16S rRNA sequencing information

Median read count (Q1, Q3) 12,792 (8,060, 16,595)

Subsample depth 1,732

Samples excluded 7

Median Good coverage (Q1, Q3) 0.952 (0.942, 0.963)

Q1, Q3, Quartile 1, quartile 3.
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TABLE E2. PERMANOVA analysis testing: significance of variance of weighted UniFrac and Bray-Curtis distance of sputum

microbiota between asthma phenotypes (permutations 5 9999)

Matrix Source df SS MS Pseudo-F P value (perm)

Weighted UniFrac Phenotype 3 9,444.4 3,148.1 3.9969 .0004

Residual 163 128,390 787.64

Total 166 137,830

Bray-Curtis Phenotype 3 8,215.4 2,738.5 3.3694 .0001

Residual 163 132,480 812.74
Total 166 140,690
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TABLE E3. Pairwise PERMANOVA analysis testing: significance of variance of weighted UniFrac and Bray-Curtis distance of

sputum microbiota between asthma phenotypes (permutations 5 9999)

Matrix Groups T P value (perm) Unique perms

Weighted UniFrac Pauci vs Neutro 2.52 <.01 9943

Pauci vs Eosino 1.28 .13 9928

Pauci vs Mixed 0.80 .62 9952

Neutro vs Eosino 3.30 <.0001 9924

Neutro vs Mixed 1.20 .21 9876

Eosino vs Mixed 1.19 .19 9939

Bray-Curtis Neutro vs Eosino 2.89 <.0001 9928

Neutro vs Pauci 2.43 <.001 9918

Neutro vs Mixed 1.18 .19 9888

Eosino vs Pauci 1.15 .17 9921

Eosino vs Mixed 0.96 .50 9899

Pauci vs Mixed 0.78 .83 9922

Eosino, Eosinophilic; Neutro, neutrophilic; Pauci, paucigranulocytic.
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TABLE E4. SIMPER analysis comparing taxa relative abundances between neutrophilic and eosinophilic phenotype groups and

showing the 13 top contributing taxa, which collectively account for approximately 50% of variance between groups

Taxa

Neutrophilic Eosinophilic

Av. Diss Contrib %Av. Abund Av. Abund

Haemophilus 0.41 0.2 4.49 8.89

Prevotella 0.23 0.33 2.61 5.16

Streptococcus II 0.13 0.27 2.58 5.11

Streptococcus I 0.45 0.51 2.34 4.63

Veillonella 0.2 0.22 1.98 3.91

Moraxella 0.13 0 1.88 3.72

Neisseria 0.11 0.19 1.65 3.26

Rothia 0.1 0.19 1.52 3

Actinomyces sp. uncultured bacterium 0.1 0.16 1.5 2.96

Gemella 0.09 0.17 1.26 2.49

Leptotrichia 0.08 0.11 1.2 2.38

Actinomyces species oral clone DR002 0.05 0.08 1.1 2.17

Porphyromonas 0.04 0.11 1.1 2.17
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TABLE E5. PERMANOVA analysis (top) and pairwise PERMANOVA on nondominant microbiome (battle), showing Bray-Curtis

distance of sputum microbiota on the genera level grouped by asthma phenotype (permutations 5 9999)

Source df SS MS Pseudo-F P value (perm)

Phenotype 3 5,381 1,793.7 2.378 .0004

Residual 163 122,950 754.3

Total 166 128,330

Groups T P value (perm) Unique perms

Neutro vs Eosino 2.31 <.0001 9922

Neutro vs Pauci 2.26 <.001 9911

Neutro vs Mixed 1.11 .24 9857

Eosino vs Pauci 0.91 .65 9904

Eosino vs Mixed 0.79 .86 9921

Pauci vs Mixed 0.73 .92 9924

Eosino, Eosinophilic; Neutro, neutrophilic; Pauci, paucigranulocytic.
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